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ABSTRACT

We combine the Cosmic Lens All-Sky Survey (CLASS) with new Sloan Digi-

tal Sky Survey (SDSS) data on the local velocity dispersion distribution function

of E/S0 galaxies, φ(σ), to derive lens statistics constraints on ΩΛ and Ωm. Pre-

vious studies of this kind relied on a combination of the E/S0 galaxy luminosity

function and the Faber-Jackson relation to characterize the lens galaxy popu-

lation. However, ignoring dispersion in the Faber-Jackson relation leads to a

biased estimate of φ(σ) and therefore biased and overconfident constraints on

the cosmological parameters. The measured velocity dispersion function from a

large sample of E/S0 galaxies provides a more reliable method for probing cos-

mology with strong lens statistics. Our new constraints are in good agreement

with recent results from the redshift-magnitude relation of Type Ia supernovae.

Adopting the traditional assumption that the E/S0 velocity function is constant

in comoving units, we find a maximum likelihood estimate of ΩΛ = 0.74–0.78

for a spatially flat universe (where the range reflects uncertainty in the number

of E/S0 lenses in the CLASS sample), and a 95% confidence upper bound of

ΩΛ < 0.86. If φ(σ) instead evolves in accord with extended Press-Schechter the-

ory, then the maximum likelihood estimate for ΩΛ becomes 0.72–0.78, with the

95% confidence upper bound ΩΛ < 0.89. Even without assuming flatness, lensing

provides independent confirmation of the evidence from Type Ia supernovae for

a nonzero dark energy component in the universe.

Subject headings: cosmological parameters — cosmology: observations — cos-

mology: theory — gravitational lensing
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1. Introduction

Gravitationally lensed quasars and radio sources offer important probes of cosmology

and the structure of galaxies. The optical depth for lensing depends on the cosmological

volume element out to moderately high redshift, so lens statistics can in principle provide

valuable constraints on the cosmological constant or, more generally, the dark energy density

and its equation of state (e.g., Fukugita, Futamase, & Kasai 1990; Fukugita & Turner 1991;

Turner 1990; Maoz & Rix 1993; Kochanek 1996; Falco, Kochanek, & Muñoz 1998; Cooray &

Huterer 1999; Waga & Miceli 1999; Waga & Frieman 2000; Sarbu, Rusin, & Ma 2001; Chae

et al. 2002; Chae 2003).

However, the cosmological constraints derived from lens statistics have been contro-

versial, mainly because of disagreements about the population of galaxies that can act as

deflectors. Kochanek (1996; see also Falco et al. 1998; Kochanek et al. 1998) reported an

upper bound of ΩΛ < 0.66 at 95% confidence for a spatially flat universe (Ωm + ΩΛ = 1),

which is in marginal conflict with the current concordance cosmology, ΩΛ = 0.69 ± 0.04

(Spergel et al. 2003). But subsequent studies have reached different conclusions (e.g., Chiba

& Yoshii 1999; Waga & Miceli 1999; Cheng & Krauss 2000). For example, Chiba & Yoshii

(1999) argued that optically-selected lenses actually favor ΩΛ = 0.7+0.1
−0.2 for a flat universe.

At issue are uncertainties in several key ingredients of traditional lens statistics calculations:

(i) the luminosity function for early-type (E/S0) galaxies, which dominate the lensing rate;

(ii) the Faber-Jackson relation between luminosity and velocity dispersion for early-types;

and (iii) the assumed density profiles of lens galaxies. The spread in derived cosmological

constraints can be traced in large measure to uncertainties in the galaxy luminosity function:

until recently, different redshift surveys yielded values for the local density of L∗ galaxies that

differed by up to a factor of two. This source of uncertainty has now been largely eliminated

by much larger galaxy redshift surveys, such as the Sloan Digital Sky Survey (SDSS) and

the 2dF Galaxy Redshift Survey (2dFGRS) (Blanton et al. 2001, 2003; Yasuda et al. 2001;

Norberg et al. 2002; Madgwick et al. 2002).

Even with the local galaxy luminosity function well determined, there is a crucial sys-

tematic uncertainty concerning changes to the deflector population with redshift. Many

analyses of lens statistics have assumed that the velocity dispersion distribution function

φ(σ) is independent of redshift (in comoving units). This is equivalent to saying that mas-

sive early-type galaxies have not undergone significant mergers since z ∼ 1; late-type galaxies

only constitute a small fraction of the lensing optical depth. Although galaxy counts appear

to be consistent with this ‘no-evolution’ model in the concordance cosmology (Schade et al.

1999; Im et al. 2002), the observational uncertainties are still large and other possibilities

cannot be ruled out. The problem for lens statistics is that evolution is degenerate with cos-

mology. Keeton (2002a) has argued that previous studies obtained strong limits on ΩΛ only

because they assumed that the evolution rate is independent of cosmology;2 dropping that

2The fact that they assumed the evolution rate to be zero is actually less important than the fact that

they assumed it to be independent of cosmology; see Keeton (2002a).
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assumption would make lens statistics largely insensitive to cosmology. One way to handle

the degeneracy is to turn the problem around: adopt values for the cosmological parameters

and attempt to constrain models of galaxy evolution (e.g., Ofek, Rix, & Maoz 2003; Chae &

Mao 2003). Unfortunately, the small size of current samples precludes using more than toy

models of evolution, and even then the uncertainties are too large to distinguish a simple

no-evolution model from various theoretical predictions. It would still be nice to use lens

statistics to probe cosmology while accounting for evolution using more than toy models.

The problems with the traditional approach to lens statistics have partly motivated an

alternate approach, in which empirical calibrations of the deflector population are replaced

with theoretical predictions from galaxy formation models (e.g., Narayan & White 1988;

Kochanek 1995; Porciani & Madau 2000; Keeton & Madau 2001; Sarbu, Rusin, & Ma 2001;

Li & Ostriker 2002). In these theory-based models, the deflector population is described by

a dark matter halo mass function, n(M, z), given by Press-Schechter theory (calibrated by

N-body simulations, see Sheth & Tormen 1999; Sheth, Mo & Tormen 2001; Jenkins et al.

2001). The predicted mass function depends on cosmology, which causes the lensing optical

depth to depend on ΩΛ through the cosmological volume element, the density perturbation

growth rate, and the merger histories of halos. Unlike in the traditional approach, here the

optical depth decreases with increasing ΩΛ — suggesting that the traditional lensing upper

bound on ΩΛ should be interpreted with caution. This ‘theoretical’ approach to lens statistics

avoids some of the untested assumptions of the traditional approach and has the advantage

of working directly with the deflector mass function rather than indirectly with a mass

function inferred from the galaxy luminosity function. However, it faces challenges of its own,

chiefly arising from theoretical uncertainties in relating dark matter halos to the properties

of luminous galaxies. For example, galaxy formation models have difficulty reproducing the

observed galaxy luminosity function and empirical galaxy dynamical scaling relations (e.g.,

White & Frenk 1991; Cole et al. 1994; Kauffmann et al. 1993, 1999; Somerville & Primack

1999; Benson et al. 2003). Since nearly all confirmed lens systems contain a luminous galaxy

that plays a significant role in the lensing, the problems with galaxy formation models may

cause concern about the theoretical approach to lens statistics.

The goal of this paper is to make two modifications to lens statistics calculations that

enable robust cosmological constraints. The first modification involves using new data on the

dynamical properties of galaxies. In standard models, the lensing optical depth is given by

a weighted integral over the galaxy velocity dispersion distribution function, φ(σ) (Turner,

Ostriker, & Gott 1984, also see §2.2). Previously, φ(σ) was inferred by combining the mea-

sured early-type galaxy luminosity function φ(L) with the empirical Faber-Jackson relation,

L(σ); hereafter, we call this the inferred velocity function. This estimator for φ(σ) has two

disadvantages: (i) neglect of the scatter in the Faber-Jackson relation yields a biased and

incorrectly confident estimate for φ(σ) (Kochanek 1994; Sheth et al. 2003); and (ii) use of

the luminosity function complicates attempts to deal with galaxy evolution, since φ(L) is

sensitive not only to dynamical galaxy number and mass evolution (which matter for lens

statistics) but also to passive luminosity evolution (which does not affect lens statistics). To

obviate these problems, it is preferable to use a direct measurement of the E/S0 velocity
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function. Fortunately, the SDSS recently provided this very measurement based on ∼30,000

E/S0 galaxies (Bernardi et al. 2003, 2004; Sheth et al. 2003). With these new data, we can

eliminate an important source of bias and misestimated error in lens statistics calculations.

The second modification concerns galaxy evolution. To make contact with previous

studies, we consider models in which φ(σ) is constant in comoving units. However, we also

study models in which φ(σ) evolves according to a theoretical prescription. As just men-

tioned, the fact that φ(σ) evolves only due to occasional mergers means that it provides

a more straightforward framework for incorporating evolution than the traditional route

through the luminosity function. Newman & Davis (2000, 2002) present such a framework

using extended Press-Schechter theory to compute the ratio of the velocity function at red-

shift z to the local velocity function, φ(σ; z)/φ(σ; 0). While model predictions for the full

velocity function φ(σ, z) are sensitive to the uncertain physics that causes discrepancies be-

tween galaxy formation models and observed galaxy populations, the prediction for the ratio

φ(σ, z)/φ(σ, 0) is not; it simply isolates the evolution piece (Newman & Davis 2002). By

joining the theoretical evolution model to the empirical calibration of the local deflector

population, we obtain a new hybrid approach to lens statistics that combines the best as-

pects (and omits the pitfalls) of the purely empirical or purely theoretical approaches used

previously.

For the lens sample, we use the Cosmic Lens All Sky Survey (CLASS; Myers et al. 1995;

Browne et al. 2003), which is the largest statistically complete survey for lenses. Chae et al.

(2002) and Chae (2003) recently analyzed the CLASS sample using the traditional approach

based on an inferred velocity function. We use the same sample but analyze it using our

new approach to lens statistics. Other small technical differences between the analyses are

discussed below.

The layout of the paper is as follows. In §2 we review the theoretical framework,

including lensing by isothermal spheres, the formalism for lens statistics, and the model for

redshift evolution of the deflector population. In §3 we discuss the required observational

data, including the measured and inferred velocity dispersion distribution functions from the

SDSS early-type galaxy sample, and the CLASS radio lens survey. In §4 we use a likelihood

analysis of the lens data to derive constraints on cosmological parameters. We conclude in

§5.

2. Theoretical Framework

2.1. The singular isothermal sphere lens

X-ray studies (e.g., Fabbiano 1989), dynamical analyses (e.g., Rix et al. 1997; Gerhard

et al. 2001), and various lensing studies (e.g., Treu & Koopmans 2002; Koopmans & Treu

2003; Rusin, Kochanek, & Keeton 2003) all indicate that on the .10 kpc scales relevant

for lensing, early-type galaxies can be modeled as singular isothermal spheres (SIS), with a
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density profile corresponding to a flat rotation curve,

ρ(r) =
σ2

2πGr2
. (1)

Here σ is the velocity dispersion of the system, r is the distance from the center of the

galaxy, and we have assumed negligible core radii and ellipticities. While lens statistics

are in principle sensitive to finite-density cores in lens galaxies (e.g., Chiba & Yoshii 1999;

Cheng & Krauss 2000; Hinshaw & Krauss 1987), the elusiveness of ‘core images’ limits

the sizes of cores to a level that is unimportant (Wallington & Narayan 1993; Rusin &

Ma 2001; Keeton 2002b; Winn et al. 2003). Also, departures from spherical symmetry are

important in detailed models of individual lenses (e.g., Keeton, Kochanek, & Seljak 1997),

but have a relatively small effect on lens statistics. For example, if all galaxies have ellipticity

e = 0.5 in the mass (and if we assume a mixed prolate/oblate population; see Chae 2003),

the total optical depth would be just 9% smaller than for the spherical case. This would

shift our constraints by ∆ΩΛ ∼ 0.04 for a flat cosmology. This shift is smaller than our

1σ uncertainties, and it is almost certainly an overestimate since early-type galaxies have

a mean ellipticity 〈e〉 ∼ 0.3 in the light (e.g., Bender et al. 1989; Jørgensen et al. 1995;

Bernardi et al. 2003). Because ellipticity would greatly complicate our calculations without

producing much effect, and because the distribution of mass ellipticities is highly uncertain,

we believe that it is appropriate to focus on spherical models.

Consider light rays propagating from a source past a lens to the observer. For an

SIS lens with velocity dispersion σ, the ray bending angle is 4π(σ/c)2, independent of im-

pact parameter. Multiple imaging occurs if the physical impact parameter is less than

4π(σ/c)2(DOLDLS)/DOS, where DOL, DLS, and DOS are the angular diameter distances

from observer to lens, lens to source, and observer to source, respectively. It is therefore

useful to define the angular Einstein radius,

θE = 4π
(σ

c

)2 DLS

DOS

, (2)

such that sources located at angle θS < θE from an SIS lens are multiply imaged. For

a Friedmann-Robertson-Walker cosmology with cosmological constant ΩΛ, non-relativistic

matter density Ωm, and curvature density Ωk = 1−ΩΛ −Ωm, the angular diameter distance

can be written

Dxy =
rxy

1 + zy
=

c

H0

Sk(χxy)

1 + zy
(3)

where rxy is the transverse comoving distance, H0 is the Hubble constant,

Sk(χxy) =











1√
|Ωk|

sin(
√

|Ωk| χxy) if Ωk < 0

1√
Ωk

sinh(
√

Ωk χxy) if Ωk > 0

χxy if Ωk = 0

, (4)

and

χxy =

∫ zy

zx

dz
[

Ωk(1 + z)2 + ΩΛ + Ωm(1 + z)3
]−1/2

. (5)
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Here and throughout, we specialize to the case where the dark energy is identical to a

cosmological constant; the generalization to a different dark energy equation of state is

straightforward (Waga & Miceli 1999; Cooray & Huterer 1999).

A source at angular separation θS < θE from an SIS lens yields two images on opposite

sides of the lens at angular positions

θ± = θE ± θS , (6)

which have magnifications

µ± =
θE ± θS

θS

. (7)

The image at θ− has µ− < 0 indicating that this image is parity reversed. The angular

separation between the images is ∆θ = 2θE , independent of the source position. The total

magnification of the two images is

µtot =
2θE

θS

, (8)

and the bright-to-faint image flux ratio is

f =
θE + θS

θE − θS
. (9)

In general lens surveys have a limited dynamic range, so a lens will be identified only if the

flux ratio is less than some value; the CLASS survey included an explicit cut at fmax = 10

(see §3.2). Thus only sources with θS < θmax < θE will lead to detectable lenses, where

θmax

θE

=
fmax − 1

fmax + 1
. (10)

2.2. Lens statistics

The optical depth for lensing is obtained by summing the cross sections for all deflectors

between observer and source. Since the SIS cross section depends only on the lens velocity

dispersion and cosmological distances, the property of the deflector population that is directly

relevant is the velocity function, φ(σ). The optical depth for lensing can be written as an

integral over φ(σ) (see, e.g., Turner, Ostriker, & Gott 1984),

τ(zS , Ωm, ΩΛ) =
1

4π

∫ zS

0

dV

∫ ∞

0

dσ φ(σ; zL) A(σ, Ωm, ΩΛ, zL, zS)B(Sν) , (11)

where zS and zL are the source and lens redshifts, A is the cross section for multiple imaging,

B is the magnification bias (defined below), and the differential comoving volume element is

dV = 4πr2
OL

drOL

dzL

d zL . (12)

For an SIS lens, the angular separation between the two images is always twice the Einstein

radius, so we can replace the integral over velocity dispersion with one over image separation.
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Magnification bias accounts for the fact that intrinsically faint sources can appear in a

flux-limited survey by virtue of the lensing magnification. The product of the cross section

A and the magnification bias B can be written as

A(σ, Ωm, ΩΛ, zL, zS)B(Sν) = 2π

∫ θmax

0

dθS θS
N(>S0/µtot)

N(>S0)
, (13)

where N(> S) is the number of sources brighter than flux S, S0 is the flux limit of the

survey, and it is appropriate to use the total magnification µtot when the sources in the

original flux-limited catalog are unresolved. If the source counts can be modeled as a power

law, dN/dS ∝ S−η (a good approximation for CLASS sources; Chae et al. 2002), then eqn. 13

can be evaluated to be

AB = πθ2
E × 2η

3 − η

(

fmax − 1

fmax + 1

)3−η

, (14)

for an SIS lens population. Note that, absent a flux ratio cut, the cross section for an SIS

lens would just be A = πθ2
E . It is convenient to define a combined correction factor B̃ that

accounts for both magnification bias and the flux ratio limit of the lens survey,

B̃(η, fmax) ≡
AB

πθ2
E

. (15)

From the total optical depth τ we can determine several interesting statistical distri-

butions. dτ/d∆θ describes the distribution of image separations, dτ/dzL gives the redshift

distribution of lens galaxies, and d2τ/dzLd∆θ gives the joint distribution for both the lens

galaxy redshift zL and the image separation ∆θ. All three of these distributions, together

with the total optical depth, are used in the likelihood analysis of the CLASS survey (see

§4).

2.3. A model for redshift evolution of the lens population

Many previous studies of lens statistics have assumed the velocity function φ(σ) to be

constant in comoving units. This no-evolution assumption is usually justified by appealing

to results from galaxy number counts (Im et al. 2002; Schade et al. 1999) and the redshift

distribution of lens galaxies (Ofek, Rix, & Maoz 2003), which are consistent with the hy-

pothesis that the early-type population evolves only through passive luminosity evolution.

However, the observational status of early-type evolution has been controversial (Lin et al.

1999; Kauffmann, Charlot, & White 1996; Totani & Yoshii 1998; Fried et al. 2001), and the

observational uncertainties are large enough that dynamical number or mass evolution in

the early-type galaxy population cannot be ruled out.

Evolution of φ(σ) in amplitude or shape could substantially impact cosmological con-

straints from lens statistics. In order to gauge these effects, we adopt an evolution model

based on theoretical galaxy formation models. Following Newman & Davis (2000, 2002), we

use extended Press-Schechter theory to compute the ratio of the velocity dispersion function
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at two epochs, φ(σ; z)/φ(σ; 0), as a function of cosmological parameters. This ratio can be

combined with the measured local velocity dispersion function φ(σ; 0) to estimate φ(σ; z)

at any epoch. As discussed in the Introduction, this estimate represents a hybrid approach

to lens statistics that combines a careful measurement of the local velocity function with a

simple but robust theoretical prediction for evolution.

N-body simulations of structure formation in cold dark matter models (e.g., Jenkins

et al. 2001) indicate that the halo mass function at epoch z is well fit by the modified

Press-Schechter form introduced by Sheth & Tormen (1999),

n(M ; z) =
ρ̄

M

d ln ν

dM
A(p)

[

1 + (qν)−p
]

(qν

2π

)1/2

exp(−qν/2) , (16)

where ρ̄ is the mean density, ν(z) = δ2
c/σ

2
δ (M, z), δc = 1.686 is the extrapolated linear

overdensity of a spherical top hat perturbation at the time it collapses, σ2
δ (M, z) is the

variance of the density field at epoch z in linear perturbation theory, smoothed with a

top hat filter of radius R = (3M/4πρ̄)1/3, and the fitting parameters have values p = 0.3,

A(p) = 0.3222, and q = 0.75. The smoothed variance is given in terms of the present linear

density power spectrum P (k) by

σ2
δ (M, z) =

D2(z)

2π2

∫ ∞

0

k2 P (k) W 2(k; M) dk , (17)

where W (k; M) is the Fourier transform of the top hat window function of radius R(M).

The linear growth factor is given by D(z) = I(z)/I(0), where

I(z) =

∫ ∞

z

1 + z

E(z)3
dz , (18)

and E(z) = H(z)/H0 = [Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2]
1/2

.

To convert the mass function into a velocity function, we must take into account the

formation epoch of halos: those that form earlier will be more concentrated and have higher

velocity dispersion for fixed mass. Following a simplified version of the procedure in Newman

& Davis (2000), we use the results of Lacey & Cole (1994) to estimate the mean formation

redshift zf for a halo of mass M observed at redshift z. Lacey & Cole (1994) define a scaled

variable

ω̃f = δc
D−1(zf ) − D−1(z)

[σ2
δ (M/2, 0) − σ2

δ (M, 0)]1/2
, (19)

and the distribution of formation redshifts is given implicitly by the probability distribution

dp/dω̃f . N-body simulations indicate that dp/dω̃f is nearly independent of halo mass and of

the power spectrum shape (Lacey & Cole 1994); following their Figure 12, we approximate

this distribution by a delta function at 〈ω̃f〉 = 0.9. While this effectively ignores the dis-

persion of formation epoch, we have checked that this approximation does not significantly

affect the estimate of φ(σ; z)/φ(σ; 0) over the range of interest.

Solving eqn. 19 for zf , and modeling each halo as an SIS, we can infer the velocity

dispersion (Newman & Davis 2000; Bryan & Norman 1997),

σ(M, z) = 92.3 ∆vir(zf )
1/6 E(zf)

1/3

(

M

1013 h−1M⊙

)1/3
km

sec
, (20)
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Fig. 1.— The ratio of the velocity function of halos at z = 1 to that at z = 0. The dashed line

shows the ratio for our maximum likelihood flat cosmology, from our theoretical calculation

based on extended Press-Schechter theory (also see Newman & Davis 2002). As a check, the

points show results from a high-resolution N-body simulation by A. Kravtsov (private com-

munication), and the solid line shows our theoretical calculation for the same cosmological

parameters. For comparison, the dotted line shows the ratio for the parameterized evolution

model used by Chae & Mao (2003).

where (Bryan & Norman 1997)

∆vir(z) = 18π2 + 60[Ω(z) − 1] − 32[Ω(z) − 1]2 , (21)

and

Ω(z) =
Ωm(1 + z)3

E2(z)
. (22)

Combining eqn. 20 with eqn. 16 yields the velocity function φ(σ; z). Figure 1 shows the ratio

φ(σ; 1)/φ(σ; 0) versus σ for several sample cases. In general, φ(σ; z) grows with redshift for

σ less than a few hundred km/sec, and the growth is strongly dependent on cosmological

parameters. We have checked that the model agrees well with high-resolution N-body sim-

ulations (A. Kravstov, private communication; see Fig. 1). We caution, however, that the

model describes the behavior of dark halos, and we are assuming that it applies to massive,

early-type galaxies. We are ignoring subtleties associated with halo substructure, baryonic

infall, etc. On the other hand, since we are computing a ratio (which is generally <2 for

the redshifts and velocity dispersions of interest for lensing), it is not extremely sensitive to

these effects (for details, see Newman & Davis 2002).
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3. Observational Inputs

3.1. The deflector population

We follow the traditional approach to lens statistics and assume that all lenses are

associated with optically luminous galaxies and calibrate the deflector population empirically.

Furthermore, we focus on early-type galaxies. Although late-type galaxies are more abundant

than early-types, they tend to have lower masses and hence to contribute no more than 10–

20% of the lensing optical depth. This is a standard prediction of lens statistics models

(Turner, Ostriker, & Gott 1984; Fukugita & Turner 1991; Maoz & Rix 1993) that has been

borne out by the data (e.g., Fassnacht & Cohen 1998; Keeton, Kochanek, & Falco 1998;

Kochanek et al. 2000; Lubin et al. 2000). We could attempt to model both the early-

and late-type deflector populations in order to compute the total lensing optical depth and

compare to the observed number of lenses produced by early- and late-type galaxies (as done

by Chae et al. 2002; Chae 2003). However, we believe it is simpler and more instructive to

separate the galaxy types, to compute the optical depth due to early-type galaxies alone,

and to compare that to the number of lenses produced by early-type galaxies. This allows

us to avoid dealing with uncertainties in the description of the late-type galaxy population.

3.1.1. The measured velocity function

We calibrate the E/S0 deflector population using a sample of ∼30,000 early-type galaxies

at redshifts 0.01 ≤ z ≤ 0.3 selected from the SDSS database (Bernardi et al. 2003, 2004).

The selection is based on both morphological and spectral criteria: the sample is restricted

to galaxies with de Vaucouleurs surface brightness profiles that lack strong emission lines.

The SDSS E/S0 sample size has increased from the ∼9000 used by Bernardi et al. (2003)

to ∼30,000 (Bernardi et al. 2004). The main differences between these samples arise from

modifications to the SDSS data reduction pipelines; see Bernardi et al. (2004) for details.

Briefly, the new model magnitudes (which are used to fit the L(σ) relation) are fainter by

∼0.12 mag, and the half-light radii θeff are smaller by ∼10%. The change in size has a

small effect on the velocity dispersions: the measurement dispersions are the same, but the

correction from the fiber aperture radius 1.′′5 to the fiducial radius θeff/8 has changed. The

aperture-corrected dispersions are what we requre, because the central velocity dispersions

of early-type galaxies are very nearly equal to the dark matter velocity dispersions needed

for the lensing calculations (Franx 1993; Kochanek 1993, 1994). The revisions to the SDSS

E/S0 sample have affected the luminosity and velocity functions as well as the slope of the

L(σ) relation.

The SDSS data reduction pipelines only measure velocity dispersions for galaxies with

spectra of sufficiently high signal to noise to ensure accurate measurement. In addition, the

resolution of the SDSS spectrographs prevents accurate estimates of dispersions smaller than

σ = 70 km/sec (Bernardi et al. 2003). Since this cutoff corresponds to a typical lens image
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Fig. 2.— The data points show the measured velocity function (MVF) for the sample

of ∼30,000 early-type galaxies in the SDSS. The heavy and light solid curves show the

best Schechter-like fits to the SDSS measured (MVF) and inferred (IVF) velocity functions,

respectively. For comparison, the dashed curve shows the IVF for the SSRS2 early-type

galaxy sample (Marzke et al. 1998), after the normalization correction applied by Chae

(2003).

separation of ∆θ . 0.′′14, well below the 0.′′3 resolution limit of the CLASS survey, it has a

negligible effect on our analysis. We therefore disagree with the claim by Chae (2003) that

the Bernardi et al. sample is too restrictive to be representative of the early-type population,

at least as regards the velocity function relevant for lensing.

Sheth et al. (2003) use the aperture-corrected dispersions to compute the velocity func-

tion, which is shown by the points in Figure 2 (for the revised sample from Bernardi et al.

2004). The function can be modeled as a modified Schechter function (Schechter 1976) of

the form

φ(σ) dσ = φ∗

(

σ

σ∗

)α

exp

[

−
(

σ

σ∗

)β
]

β

Γ(α/β)

dσ

σ
, (23)

where φ∗ is the integrated number density of galaxies, σ∗ is a characteristic velocity disper-

sion,3 α is the low-velocity power-law index, and β is the high-velocity exponential cutoff

3Note that σ∗ can be quite different from the mean value: 〈σ〉 = σ∗ Γ[(1 + α)/β]/Γ[α/β] = 160 km/s.
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index of the distribution. The best-fit parameter values are4

(φ∗, σ∗, α, β)MV F = ((1.4±0.1)×10−3 h3
70Mpc

−3
, 88.8±17.7 km/sec, 6.5±1.0, 1.93±0.22) ,

(24)

where the Hubble parameter H0 = 70 h70 km/sec/Mpc. The curve in Figure 2 shows this

fit. Possible evolution in the velocity function can be treated as redshift dependence in the

parameters φ∗, σ∗, α, and/or β.

The new, large sample of early-type galaxies in the SDSS contains a small surplus of

galaxies with velocity dispersions ≥450 km/sec that is not fit by the Schechter function (see

Fig. 2). Although massive, such galaxies are sufficently rare that they contribute only ∼0.2%

of the lensing optical depth, so we have not attempted to modify the MVF fit to include

them.

Using the Schechter fit for the velocity function, the optical depth becomes (see eqn. 11)

τ(zS , Ωm, ΩΛ) =

(

c

H0

)3 ∫ zS

0

τ∗(zL)

(

rOLrLS

rOS

)2
drOL

dzL
dzL B̃(η, fmax) (25)

where

τ∗(z) = 16π3 φ∗(z)

[

σ∗(z)

c

]4 Γ
[

α(z)+4
β(z)

]

Γ
[

α(z)
β(z)

] . (26)

If there is no evolution in φ(σ) then τ∗ is just a constant that can be pulled out of the

integral in eqn. 25. For a flat cosmology, the redshift integral in eqn. 25 can be evaluated

analytically; in this no-evolution flat case, the optical depth is τ = τ∗ B̃ (c/H0)
3 r3

OS. This

simple example illustrates how lens statistics probe the volume of the universe out to the

redshifts of the sources.

3.1.2. The inferred velocity function

As discussed in the Introduction, previous analyses of lens statistics usually obtained

an estimate of the velocity function by taking an observed galaxy luminosity function and

transforming it using the Faber-Jackson relation; we refer to this estimate as the inferred

velocity function, or IVF. Generally, the luminosity function is modeled as a Schechter

function,

φ(L) dL = φ̃∗

(

L

L∗

)α̃

exp

[

−
(

L

L∗

)]

dL

L∗
, (27)

where the parameters are the comoving number density of galaxies φ̃∗,LF , the characteristic

luminosity L∗ (or corresponding absolute magnitude M∗), and the faint-end slope α̃LF . With

4These values are the same as those reported by Sheth et al. (2003) for the original sample of Bernardi

et al. (2003), except that the normalization φ∗ is lower by 30%.
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a Faber-Jackson relation of the form L/L∗ = (σ/σ∗)
γ , the IVF becomes

φ(σ) dσ = φ̃∗

(

σ

σ∗

)γ(α̃+1)−1

exp

[

−
(

σ

σ∗

)γ]

γ
dσ

σ∗
. (28)

The coefficient of the optical depth, τ∗, for this distribution differs slightly from the form of

eqn. 26:

τ∗ = 16π3 φ̃∗

(σ∗
c

)4

Γ

[

1 + α̃ +
4

γ

]

. (29)

With this change, the optical depth has the same form as eqn. 25.

We must consider how evolution in the deflector population could affect the velocity

function. Dynamical evolution due to mergers would change both the luminosity function

and the velocity function. Passive luminosity evolution (due to aging stellar populations)

would affect the luminosity function but not the velocity function, at least for simple models.

If galaxies of different luminosities have the same passive evolution rate, then L depends on

redshift but L/L∗ does not. Conceptually, the changes in the luminosity function are offset

by corresponding changes in the Faber-Jackson relation such that the IVF remains constant.

This makes sense, because the velocity function describes the dynamical properties of galaxies

so any evolution that leaves the dynamics unchanged must also leave the velocity function

unchanged. We focus on a non-evolving velocity function when using the IVF.

Chae (2003) and Chae et al. (2002) recently analyzed the statistics of CLASS lenses

using an IVF based on the Second Southern Sky Redshift Survey (SSRS2). SSRS2 is a

relatively shallow (z ≤ 0.05), bright (mB ≤ 15.5) survey that contained only 5404 galaxies

but allowed visual classification of the morphological types (Marzke et al. 1998), yielding

1595 early-type galaxies. With this small sample, the normalization is sure to suffer biases

from large-scale inhomogeneities; to compensate, Chae corrected the normalization using

the total luminosity function normalization scaled by the fraction of early-types measured

in other, larger surveys. The Schechter luminosity function parameters for the early-type

galaxy sample, as reported by Chae (2003), are

(φ̃∗, M
∗
0 , α̃)LF, SSRS2 = (2.2 × 10−3 h3

70Mpc
−3

,−20.40, −1.0) . (30)

Chae (2003) and Chae et al. (2002) fixed the Faber-Jackson index at γ = 4. Rather than

using external constraints on σ∗, they chose to calibrate this parameter as part of their

likelihood analysis of CLASS lenses. In effect, σ∗ was determined by the distribution of lens

image separations. The resulting IVF parameters for SSRS2 are

(φ̃∗, σ∗, γα̃ + γ − 1, γ)IV F, SSRS2 = (2.2 × 10−3 h3
70Mpc

−3
, 198 km/sec, −1.0, 4.0) . (31)

There are two possible causes for concern in the use of the lens image separation distribution

for an internal calibration of σ∗. First, this approach introduces Poisson errors associated

with the small lens sample. Second, it may introduce systematic biases if the small number

of lens galaxies in the sample are not representative of massive early-type galaxies. Use of

the velocity dispersion function measured directly from a large sample avoids both of these

problems.
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Fig. 3.— The SDSS E/S0 luminosity function. The points show the data from the sample

of ∼30,000 galaxies given by Bernardi et al. (2004). The dashed line shows the Gaussian

fit reported by Bernardi et al. (2003), with M∗ increased by 0.125 and the normalization

reduced to φ∗ = 0.001 to adjust to the updated photometry (see Bernardi et al. 2004). The

solid line shows our Schechter fit.

We can also obtain an IVF for the SDSS early-type galaxy sample. The error bars in

Figure 3 show the measured luminosity function for the revised SDSS sample from Bernardi

et al. (2004). The dashed line shows a Gaussian fit to the data reported by Bernardi et al.

(2003), but shifted faintwards by 0.125 mag and downwards to φ∗ = 0.001, as required by

the new data reductions. We have refit the sample with a Schechter function, finding best-fit

parameters

(φ∗, M
∗
r , α, β)LF,SDSS = (1.4 × 10−3 h3

70Mpc
−3

, −16.46 − 0.85z, 2.53, 0.43) . (32)

The solid line in Figure 3 show this fit. Compared to the Gaussian fit, the Schechter fit does

a better job at both the faint end (which is why its normalization φ∗ is slightly larger) and

the bright end, so we focus on it.

The SDSS sample also provides a direct calibration of the L(σ) (Faber-Jackson) relation.

With the sample from Bernardi et al. (2004), the mean inverse relation is

〈log10(σ/km sec−1) | Mr〉 = 2.2 − 0.091(Mr + 20.79 + 0.85z) , (33)

which corresponds to a Faber-Jackson index γ = 4.4. Thus, the SDSS IVF is described by

the parameters

(φ∗, σ∗, α, β)IV F,SDSS = (1.4 × 10−3 h3
70Mpc

−3
, 64.0 km/sec, 11.13, 1.89) , (34)

which is also shown in Figure 2.
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Fig. 4.— A comparison of the lensing efficiency, LE ≡ φ(σ) σ4, for the measured and

inferred velocity functions from the SDSS early-type galaxy sample, and for the inferred

velocity function from the SSRS2 early-type galaxy sample.

Clearly both the SSRS2 and SDSS IVFs differ systematically from the SDSS MVF.

Sheth et al. (2003) showed that the difference between the SDSS IVF and MVF is due to

the fact that the IVF ignores the considerable dispersion in the L(σ) relation. They found

that the RMS scatter around the mean relation is

rms(log10(σ/km sec−1) | Mr) = 0.79 [1 + 0.17 (Mr + 21.025 + 0.85z)] . (35)

(This result holds for both the original and revised SDSS samples.) The scatter broadens

the velocity function and, in particular, raises the tail to high σ without changing the mean

(also see Kochanek 1994). The impact on lens statistics is apparent when we examine the

differential ‘lensing efficiency’ (LE), or the contribution to the lensing optical depth from

each σ bin (see eqn. 26):

LE ≡ φ(σ) σ4 ∝ dτ

dσ
. (36)

Figure 4 shows the lensing efficiency for the SSRS2 IVF, the SDSS IVF, and the SDSS

MVF. The IVF substantially underestimates the abundance of massive early-type galaxies

and hence the total optical depth. This effect leads directly to a lensing estimate for ΩΛ that

is biased high (see §5). The effect can be seen quantitatively by comparing τ∗ = 6.92× 10−3

for the SDSS MVF, versus τ∗ = 5.79 × 10−3 for the SDSS IVF.

3.2. Radio source lens survey: CLASS

While some 80 multiply imaged quasars and radio sources have been discovered, a sta-

tistical analysis requires a sample from a survey that is complete and has well-characterized,
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Survey Name zL zS ∆θ Lens Reference

JVAS B0218+357 0.68 0.96 0.33 S Patnaik et al. (1993)

CLASS B0445+123 0.56 — 1.33 ? Argo et al. (2003)

CLASS B0631+519 — — 1.16 ? Browne et al. (2003)

CLASS B0712+472 0.41 1.34 1.27 E Jackson et al. (1998)

CLASS B0850+054 0.59 — 0.68 ? Biggs et al. (2003)

CLASS B1152+199 0.44 1.01 1.56 ? Myers et al. (1999)

CLASS B1359+154 — 3.21 1.65 ?, m Myers et al. (1999)

JVAS B1422+231 0.34 3.62 1.28 E Patnaik et al. (1992b)

CLASS B1608+656 0.64 1.39 2.08 E, m Myers et al. (1995)

CLASS B1933+503 0.76 2.62 1.17 E Sykes et al. (1998)

CLASS B2045+265 0.87 1.28 1.86 ? Fassnacht et al. (1999)

JVAS B2114+022 0.32/0.59 — 2.57 E, m Augusto et al. (2002)

CLASS B2319+051 0.62/0.59 — 1.36 E Rusin et al. (2001)

Table 1: Data for the 13 Lenses in the CLASS statistical sample of 8958 objects (adapted

from Browne et al. (2003), Chae (2003), and Davis, Huterer, & Krauss (2003)). “Lens”

stands for the morphology of the lens galaxy: spiral (S), elliptical (E), or unknown (?); three

lenses contain multiple galaxies (m).

homogeneous selection criteria. The largest such sample comes from the radio Cosmic Lens

All-Sky Survey (CLASS; Browne et al. 2003; Myers et al. 2003), an extension of the earlier

Jodrell Bank/Very Large Array Astrometric Survey (JVAS; Patnaik et al. 1992a; King et al.

1999). About 16,000 sources have been imaged by JVAS/CLASS, with 22 confirmed lenses.

Of these, a subset of 8958 sources with 13 lenses forms a well-defined subsample suitable for

statistical analysis (Browne et al. 2003). The properties of these lenses are summarized in

Table 1. Of the 13 lenses, 8 have measured source redshifts, 11 have measured lens redshifts,

and 7 have both (Chae et al. 2002).

Radio lens surveys (Quast & Helbig 1999; Helbig et al. 1999; Chae et al. 2002) have

several advantages over earlier optical QSO lens surveys: (i) they contain more sources and

therefore have smaller statistical errors; (ii) they are not afflicted by systematic errors due

to reddening and obscuration by dust in the lens galaxies; and (iii) they can more easily

probe sub-arcsecond image angular separations than seeing-limited optical surveys. The

main limitation of radio surveys is poor knowledge of the radio source luminosity function

(Marlow et al. 2000; Muñoz et al. 2003).

The flux limit of the CLASS survey is 30 mJy at 5 GHz. The flux distribution of sources

above the flux limit is well described by a power law, |dN/dSν | ∝ S−η
ν , with η = 2.07± 0.02.

The statistical lens sample is believed to be complete for all lenses for which the flux ratio

between the images is ≤10. Using these parameters with eqn. 14, we find that the factor

B̃ in the optical depth that accounts for the magnification bias and the flux ratio cut is

B̃ = 3.97.
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As discussed in §3.1, we compute the optical depth due to early-type galaxies and seek

to compare that with the number of lenses produced by early-type galaxies in the CLASS

survey. However, the morphologies and spectral types of the lens galaxies have been identified

in only some of the CLASS lenses: of the 13 lenses in Table 1, six are known to be E/S0

galaxies, one is a spiral, and the rest are unknown. With 80–90% of lenses produced by E/S0

galaxies, we would expect 10–12 of the CLASS lenses to have early-type lens galaxies. We

exclude from our analysis the one lens identified as a spiral, B0218+357. There are arguments

for discarding two others as well: B1359+154 because it has three separate lensing galaxies

and therefore violates our assumption that a single SIS potential is responsible for each lens;

and B0850+054 because its sub-arcsecond image separation might be taken to suggest that

it is produced by a spiral galaxy. We carry out our analysis for two cases, one with 12 lenses

and the other with 10, and we believe that this spans the plausible range of possibilities.

The probability that an object is lensed depends on its redshift, but the redshifts of

sources in the CLASS sample are not all known. We follow Chae et al. (2002) and adopt

the following approach: (i) for lenses, if the source redshift is known it is used, otherwise

zS is set to the mean value of source redshifts for the lensed sample, 〈zS〉 = 2; (ii) for

unlensed sources, the redshift distribution is modeled as a Gaussian with 〈zS〉 = 1.27 and

σzS
= 0.95, derived from a small subset of the sources that have measured redshifts (Marlow

et al. 2000). For unlensed sources, we must also correct the lensing probability to account

for the resolution limit ∆θ > 0.′′3 of the CLASS survey. In principle we want to compute

the probability of producing a lens with image separation ∆θ > 0.′′3, although in practice it

is more straightforward to compute the probability of producing any image separation and

subtract the probability of producing an image separation ∆θ < 0.′′3.

Figure 5 shows the image separation distributions for the CLASS sample assuming 10

or 12 E/S0 lenses. Also shown are the predictions for fiducial models using the SDSS MVF

or IVF, for two different cosmologies: the concordance cosmology, Ωm = 0.3 and ΩΛ = 0.7,

and our best-fit cosmology Ωm = 0.9 and ΩΛ = 1.5 (see §4). The models broadly predict

the correct trend in the image separation distribution, with relatively little sensitively to

cosmology. Both the MVF and IVF cases predict more sub-arcsecond image separations

than are observed (even using just early-type galaxies), and hence underestimate the mean

separation. However, for the MVF model the disagreement is not strong: Kolmogorov-

Smirnov tests suggest that the observed and predicted distributions differ at no more than

1–2σ. In the IVF case the disagreement is worse at both small and large image separations,

and K-S tests suggest a difference between the data and models at the 98–99% confidence

level.
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Fig. 5.— The observed CLASS image separation distribution compared to predictions based

on the SDSS galaxy sample: (a) MVF and 10 lenses, (b) MVF and 12 lenses, (c) IVF and

10 lenses, (d) IVF and 12 lenses. We show model predictions for two different cosmologies:

(Ωm, ΩΛ) = (0.3, 0.7) and (0.9, 1.5). The dotted line at ∆θ = 0.′′3 indicates the CLASS

resolution limit.

4. Likelihood Analysis of the CLASS Sample

4.1. Methods

In a likelihood analysis, the conditional probability of the data given a model is the

product of the probabilities for the individual sources. For an unlensed source, the relevant

quantity is the probability that the source is not lensed, or (1− τ). For a lensed source, the

relevant probability depends on the amount of information that is known about the lens;

for example, we can consider not just the probability that a particular source is lensed, but

rather the probability that it is lensed with a particular image separation by a galaxy at

a particular redshift (if both ∆θ and zL are known). Thus, the probability that enters the
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likelihood analysis depends on what data are available:

Pl =











dτ
dzL

if zL is known
dτ

d∆θ
if ∆θ is known

d2τ
dzLd∆θ

if both are known

. (37)

The conditional probability of the data, d, given some model parameters is then

P (d | εl, εc) =
Nu
∏

i=1

(1 − τ (i))

Nl
∏

j=1

P
(j)
l . (38)

where Nu and Nl are the number of unlensed and lensed sources, respectively, εl = (φ∗, σ∗, α, β)

are the lens model parameters parameters, and εc = (Ωm, ΩΛ) are the cosmological param-

eters.5 We can incorporate any uncertainties in the lens model parameters using a prior

probability distribution P (εl). By Bayes’ theorem, the likelihood of the model given the

data is then

L(εl, εc | d) =
∏

k

P (ε
(k)
l )

Nu
∏

i=1

(1 − τ (i))

Nl
∏

j=1

P
(j)
l . (39)

Because the optical depth is small (τ ≪ 1), we can write

lnL(εl, εc | d) =
∑

k

ln P (ε
(k)
l ) +

Nu
∑

i=1

ln(1 − τ (i)) +

Nl
∑

j=1

ln P
(j)
l ,

≃
∑

k

ln P (ε
(k)
l ) −

Nu
∑

i=1

τ (i) +

Nl
∑

j=1

ln P
(j)
l ,

≃
∑

k

ln P (ε
(k)
l ) −

∫

N(zS) τ(zS) dzs +

Nl
∑

j=1

ln P
(j)
l , (40)

where N(zS) is the redshift distribution of CLASS sources (see §3.2), normalized to the

number of unlensed sources in the statistical sample.

In principle, a likelihood analysis of lens statistics can be used to probe either the

lens galaxy population (e.g., Davis, Huterer, & Krauss 2003) or cosmology. We focus on the

latter and marginalize over lens model parameters as appropriate. When using the measured

velocity function, we find that uncertainties in the MVF parameters have negligible effect

on cosmological conclusions (see §4.3). When using the inferred velocity function, the most

important uncertainty is in σ∗, partly because the optical depth is so sensitive to σ∗ (see

eqn. 25), and partly because the scatter in the Faber-Jackson relation effectively leads to

a large uncertainty in σ∗. We combine the inverse Faber-Jackson relation and its scatter,

eqns. 33 and 35, with M∗
r from the Schechter luminosity function, to obtain a Gaussian prior

on σ∗. We then marginalize over σ∗:

L(εc | d) =

∫

L(εl, σ∗ | d) dσ∗ . (41)

5Note that the lensing probability does not depend on the Hubble constant.
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Fig. 6.— Likelihood contours for the SDSS inferred velocity function (IVF) and measured

velocity function (MVF) for 10 and 12 CLASS lenses. Contours are drawn at the 68, 90, 95,

and 99% confidence levels for the MVF model; but only the 95 and 99% contours for the IVF

model, because the other contours run into the shaded region where the cosmology is either

unphysical (has imaginary comoving distances, dark shaded region) or has no Big Bang (a

bounce at z < 6, light shaded region). The dotted line marks spatially flat cosmologies.

In this analysis, we keep the power-law index γ of the Faber-Jackson relation fixed at the

best-fit value, γ = 4.4. We also assume the luminosity function parameters in eqn. 32 are

well determined and fix them at their best-fit values. These assumptions are justified because

the uncertainties in the luminosity function parameters are small compared to the scatter in

the Faber-Jackson relation.

4.2. Cosmological constraints: no-evolution model

We first follow many of the previous analyses of lens statistics and assume that the

velocity function does not evolve. Figure 6 shows likelihood contours in the plane of (Ωm, ΩΛ)

using the CLASS sample with either 10 or 12 early-type lenses, and using either the SDSS

MVF or IVF lens model parameters. Figure 7 shows the relative likelihood versus ΩΛ along
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Fig. 7.— Slices of relative probability along the line of spatially flat cosmologies, for the

four models in Fig. 6. The thick curves the differential probabilities, dP/dΩΛ, while the thin

curves show the cumulative probabilities, P (> ΩΛ). The dashed lines mark the maximum

likelihood values.

the slice through the (Ωm, ΩΛ) plane corresponding to a spatially flat cosmology (Ωm +ΩΛ =

1). Table 2 gives quantitative constraints on ΩΛ for flat cosmologies.

The constraints in the (Ωm, ΩΛ) plane from the MVF model resemble those derived

from the redshift-magnitude relation in Type Ia supernovae (e.g., Tonry et al. 2003). The

reason is that both phenomena are measuring cosmological distances at moderate redshifts

z ∼ 1–2. One of the key results from Figure 6 is that lensing requires ΩΛ > 0 are more than

99% confidence, even without assuming a flat universe. This is important confirmation of

the evidence from supernovae that there is a nonzero dark energy component in the universe.

We mentioned in §3.1 that neglecting the scatter in the Faber-Jackson relation causes

the IVF model to underestimate the abundance of massive early-type galaxies, and hence

underestimate the lensing optical depth. This causes a significant bias toward higher values

of ΩΛ. The shift between the IVF and MVF models is ∆ΩΛ ≃ 0.2 for flat cosmologies, which

pushes ΩΛ disturbingly close to unity. More generally, the IVF model requires a cosmology

with a very large dark energy component that borders on being unphysical. The scatter in



– 22 –

Model 10 CLASS early-type lenses 12 CLASS early-type lenses

MLE 68% 95% UL MLE 68% 95% UL

IVF 0.96 +0.03
−0.03

NA
−0.06 NA 0.97 NA

−0.03
NA
−0.06 NA

MVF 0.74 +0.09
−0.11

+0.14
−0.28 0.84 0.78 +0.07

−0.10
+0.12
−0.23 0.86

eMVF 0.72 +0.13
−0.18

+0.20
−0.46 0.86 0.78 +0.10

−0.16
+0.16
−0.38 0.89

Table 2: Constraints on ΩΛ for spatially flat cosmologies, using models based on the IVF,

the MVF (neglecting evolution), and the MVF including the effects of evolution (‘eMVF’).

We quote the maximum likelihood estimate (‘MLE’), the 68% and 95% confidence limits,

and the 95% confidence upper limit (‘UL’). We give results for cases with 10 or 12 CLASS

E/S0 lenses.

the Faber-Jackson relation is clearly important for lens statistics.

Note the curious result the IVF model appears to yield tighter cosmological constraints

than the MVF model, even though we have included uncertainty in σ∗ in the IVF analysis.

The difference can be explained by the dependence of the comoving volume element on the

cosmological parameters. Poisson errors in the lens sample can be thought of as giving some

particular uncertainty σV in the cosmological volume. The inferred uncertainty in ΩΛ is,

conceptually,

σΩΛ
=

σV

dV/dΩΛ
. (42)

The derivative dV/dΩΛ increases rapidly as ΩΛ increases, leading to a decreasing uncertainty

σΩΛ
. Because the IVF has a larger best-fit value of ΩΛ than the MVF, it has a smaller inferred

uncertainty.

It is difficult to compare our results directly with those of Chae (2003) and Chae et

al. (2002), since they find that uncertainties in the late-type galaxy population lead to

considerable uncertainties in the cosmological constraints. (As mentioned in §3.1, this is a

large part of our rationale for excluding late-type lenses from our analysis.) Depending on

priors placed on the late-type population, Chae (2003) finds best-fit values of ΩΛ for a flat

Universe between 0.60 and 0.69. These values are ∼0.1 lower than ours because the SSRS2

IVF produces a higher optical depth than the SDSS MVF (see Fig. 4).

4.3. Effects of uncertainties in the MVF parameters

In the previous section we assumed that the MVF parameters were known precisely. To

consider how uncertainties in the parameters affect the cosmological constraints, we adopt

a Monte Carlo approach that automatically includes important covariances between the

parameters. Specifically, we created 1000 mock catalogs each containing 30,000 velocity dis-

persions drawn from the best Schechter function fit to the SDSS MVF. We then refit each
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Fig. 8.— The scatter in the maximum likelihood estimates of Ωm and ΩΛ due to uncertainties

in the MVF parameters, based on 1000 Monte Carlo realizations of the SDSS MVF. We show

results for 10 and 12 CLASS E/S0 lenses (left and right panels, respectively).

catalog to produce 1000 sets of lens model parameters that represent the scatter and covari-

ance associated with having a finite number of galaxies. This is identical to the procedure

used by Sheth et al. (2003) to estimate the uncertainties in the MVF parameters.

We then repeated the likelihood analysis of the CLASS sample using the 1000 sets of

mock lens parameters. Figure 8 shows the resulting maximum likelihood estimates of Ωm

and ΩΛ. The uncertainties in the MVF parameters clearly have a negligible effect on the

cosmological constraints, producing a scatter of just ∼0.006 in Ωm and ∼0.010 in ΩΛ.

4.4. Cosmological constraints: evolution model

We now consider how evolution in the velocity function can affect the cosmological

constraints. We use the theoretical evolution model described in §2.3 together with the

SDSS MVF. Figure 9 shows the probability versus ΩΛ for spatially flat cosmologies. The

maximum likelihood estimate and 1σ uncertainties are ΩΛ = 0.72+0.13
−0.18 for 10 CLASS E/S0

lenses, or 0.78+0.10
−0.16 for 12 E/S0 lenses (see Table 2).

Surprisingly, evolution appears to broaden the uncertainties on ΩΛ without shifting the

maximum likelihood value. The increase in the uncertainties is fairly straightforward to

understand. The evolution model predicts that φ(σ) increases between z = 0 and z = 1

(except for rare, very massive galaxies; see Fig. 1), which would increase the optical depth.

But the effect weakens as ΩΛ increases, which partially offsets the increase in the cosmological

volume and causes τ(ΩΛ) to be less steep for the evolution model than for the no-evolution

model. The Poisson errors in the lens sample (or, equivalently, in the measured value of

τ) therefore translate into larger uncertainties in ΩΛ. Our results confirm the suggestion by

Keeton (2002a) that cosmology dependence in the evolution rate can weaken the cosmological
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Fig. 9.— Relative probability versus ΩΛ for spatially flat cosmologies, using the SDSS MVF

and our evolution model based on extended Press-Schechter theory.

conclusions drawn from lens statistics.

Understanding why evolution produces no shift in the maximum likelihood values is

more subtle. Because the velocity function is predicted to rise from z = 0 to z ∼ 1 (over

the relevant range of σ; see Fig. 1), we might naively expect that evolution would increase

the optical depth and push us to lower values of ΩΛ. However, there are actually competing

effects in the likelihood. Consider the expression for the log likelihood in eqn. 40. The maxi-

mum likelihood corresponds to the point where the derivative with respect to ΩΛ vanishes —

or where the derivatives of the first and second terms in eqn. 40 are equal. Figure 10 shows

these two derivatives as a function of ΩΛ, for both non-evolving and evolving MVF models.

As just mentioned, evolution flattens the dependence of the optical depth on ΩΛ, lowering

the derivatives. But it affects the two terms differently, because the lens term is a sum of

log τ while the non-lens term is a sum of τ itself. The flattening effect fortuitously cancels

near ΩΛ ≃ 0.78, so there is no shift in the location of the maximum likelihood. We emphasize

that the almost perfect cancellation near the concordance cosmology is a coincidence; if the

best-fit value of ΩΛ were something different, then we would see evolution produce a shift in

the location of maximum likelihood. But as it stands, evolution does not appear to have a

strong effect on our cosmological constraints.

5. Conclusions

We have derived new constraints on the cosmological parameters using the statistics of

strong gravitational lenses. We have modified lens statistics calculations in two important

ways. First, we point out that neglecting scatter in the Faber-Jackson relation biased the

results of previous analyses of lens statistics (also see Kochanek 1994). Working with a

direct measurement of the velocity dispersion distribution function removes these biases.

Second, we use a theoretical model for the redshift evolution of the velocity function to
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Fig. 10.— Derivatives of the two ΩΛ-dependent terms in the log likelihood, eqn. 40, for our

MVF (solid lines) and evolving MVF (dashed lines) models. In each case the lower and upper

curves represent the terms for non-lensed and lensed sources, respectively; the likelihood is

maximized at the point where the curves cross. Jaggedness in the curves is due to numerical

noise. We show results for 12 CLASS E/S0 lenses. The dotted line marks ΩΛ = 0.78.

study how evolution affects lens statistics. These modifications allow us to obtain more

robust cosmological constraints.

We find good agreement between lens statistics and the current concordance cosmology

(at 1σ) and with the recent results from Type Ia supernovae (e.g., Tonry et al. 2003). Our

maximum likelihood flat cosmology for the (non-evolving) MVF model has ΩΛ = 0.74+0.09
−0.11 if

10 of the 13 CLASS lenses are produced by early-type galaxies, or ΩΛ = 0.78+0.07
−0.10 if there are

12 CLASS early-type lenses. Neglecting the scatter in the Faber-Jackson relation (using the

IVF rather than the MVF) would bias the results toward higher values of ΩΛ, with a shift

∆ΩΛ ≃ 0.2 that is twice as large as the statistical errors. If there is evolution in the velocity

function that can be modeled with extended Press-Schechter theory, it has surprisingly little

effect on the maximum likelihood values of ΩΛ but it does increase the uncertainties by

∼50%.

There are several systematic effects that await further data or analysis. First, the most

significant limitation of the CLASS sample is poor knowledge of the source redshift dis-

tribution, which leads to an estimated uncertainty of ∼0.11 in ΩΛ (Chae 2003). Second,

recent work has suggested that neglecting lens galaxy environments can bias lens statistics

analyses. Satellite galaxies (Cohn & Kochanek 2003) and groups or clusters around lens

galaxies (Keeton & Zabludoff 2004) can increase lens image separations and cross sections.

Conversely, neglecting their effects (as we and nearly all other authors have done) can cause
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underestimates of the image separations and cross sections, and hence overestimates of ΩΛ.

Poor knowledge of the distribution of lens galaxy environments prevents a detailed calcula-

tion of the effect, but Keeton & Zabludoff (2004) estimate that the shift in ΩΛ is certainly

less than 0.14 and more likely to be at the level of ∼0.05.

While it is gratifying to see that lens statistics now agree with what are considered to

be strong cosmological constraints from supernovae and the cosmic microwave background,

one may wonder whether the lensing results are actually interesting. We believe that they

are, for several reasons. Perhaps the most essential question in cosmology today is whether

there is a dark energy component. To date the only single dataset able to address that

question has been the supernovae. (The CMB constrains the total density ΩΛ + Ωm, while

clusters constrain Ωm.) Perhaps the most significant result from lens statistics is strong

evidence for ΩΛ > 0, absent any other cosmological assumptions (see Fig. 6). With the

underlying physics of Type Ia supernovae not understood, the confirmation from lensing is

significant. Playing such a secondary role may not be exciting, but it is still important.

Alternatively, if the cosmology is known and accepted from other methods, then lensing

will provide perhaps the cleanest probe of dynamical evolution in the early-type galaxy

population to test the paradigm of hierarchical structure formation that forms the other

main pillar of our cosmological paradigm.
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